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Abstract— Object feature pollution is one of the burning
issues in vision-based UAV tracking, commonly caused by
occlusion, fast motion, and illumination variation. Due to the
contaminated information in the polluted object features, most
trackers fail to precisely estimate the object location and scale.
To address the above disturbing issue, this work proposes a
novel end-to-end feature decontaminated network for efficient
and effective UAV tracking, i.e., FDNT. FDNT mainly includes
two modules: a decontaminated downsampling network and a
decontaminated upsampling network. The former reduces the
interference information of the feature pollution and enhanced
the expression of the object location information with two
asymmetric convolution branches. The latter restores the object
scale information with the super-resolution technology-based
low-to-high encoder, achieving a further decontamination effect.
Moreover, a novel pooling distance loss is carefully developed
to assist the decontaminated downsampling network in con-
centrating on the critical regions with the object information.
Exhaustive experiments on three well-known benchmarks val-
idate the effectiveness of FDNT, especially on the sequences
with feature pollution. In addition, real-world tests show the
efficiency of FDNT with 31.4 frames per second. The code
and demo videos are available at https://github.com/
vision4robotics/FDNT.

I. INTRODUCTION

Vision-based UAV tracking is a significant branch in
intelligent object tracking for numerous practical applica-
tions [1]–[3]. Based on the chosen object in the initial frame,
trackers offer a fast prediction of the object position and size
as soon as a new frame is acquired by the UAV. Since the
complex scenarios like occlusion, fast motion, and illumina-
tion variation are more common from the UAV perspectives,
object feature pollution is a more serious issue in aerial track-
ing situations than it is in ordinary tracking scenes. Despite
recent advances in improving tracking performance, UAV
tracking is still plagued by the problem of feature pollution.
Siamese tracking [4]–[7], regarded as a type of state-of-
the-art (SOTA) approach, is typically capable of handling a
wide range of conditions in UAV tracking [8]–[10]. Siamese
trackers are characterized by the template matching with
the convolutional neural networks (CNNs), providing ro-
bust tracking performance. Nevertheless, lightweight CNNs
such as AlexNet [11] struggle to effectively identify the
object features in the presence of pollution, making robust
tracking performance difficult in the challenging tracking
situations. While increasing the kernel size or the depth of
the backbone [12] will ease some of the problems of feature
pollution, tracking efficiency and practicability will suffer as
a consequence, particularly in UAV tracking.
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Fig. 1. An extensive comparison of the proposed FDNT with state-
of-the-arts (SOTA) on three challenging UAV tracking benchmarks. The
authoritative benchmarks are UAV123 [34], UAV123@10fps [34], and
UAVTrack112 L [33], respectively. FDNT achieves more robust perfor-
mance than other SOTA trackers in the average precision and success.

Recently, some image denoising and deblurring meth-
ods [13]–[16] utilize downsampling and upsampling to
solve the problems respectively. Specifically, the denoising
method [13] applies an invertible downsampling operation to
expand the respective field. Furthermore, InvDN [14] down-
scales the input image to a latent representation, separating
the low-resolution and high-frequency parts for further de-
noising. Moreover, downsampling can reduce the processing
load on devices with limited computational capability, such
as UAV platforms [17]. While the image deblurring can
use the upsampling method to supplement specific details
for the blurred image. BMDSRNet [15] and SRDN [16]
utilize the super-resolution networks to handle the motion
deblurring difficulties, achieving the significant effect. Noise
and blur are the main parts of the object feature pollution
issues, which are frequently produced by the challenging
UAV tracking scenes. However, the current upsampling and
downsampling techniques can only partially address the
feature contamination problems. Besides, since the size of
the downsampled image is reduced, the tracked object scale
information is also changed. Thereby the trackers can be
misled by the incorrect object information. While directly
upsampling the image will increase additional pollution
information unrelated to the tracked object. In the meantime,
the image upsampling is hard to satisfy the real-time needs
of practical applications for UAV tracking since the enlarged
image expands the processing time.

Consequently, an efficient and effective tracker is required
to cope with object feature pollution. This work first applies
the downsampling technology to remove the interference in
the object features, thereby enhancing the object location
information. Furthermore, to exactly estimate the object size
during the UAV tracking process, the upsampling technology
is used to restore the object scale information changed by
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the downsampling. Through the feature downsampling and
upsampling, the clean object features can be obtained for
precise tracking results.

In the proposed tracker, a novel end-to-end feature decon-
taminated network-based tracker (FDNT) for UAV tracking
is proposed. FDNT mainly consists of two parts, a decon-
taminated downsampling network to strengthen the location
information of the object and a decontaminated upsampling
network to restore the object scale information. Specifi-
cally, the decontaminated downsampling network applies
two asymmetric convolution branches to reduce the polluted
object features. Through the downsampling process, the
low-resolution object features effectively place importance
on the overall position information of the tracked object,
alleviating the influence of the feature pollution. Moreover,
the low-resolution object features can reduce the amount
of calculation for the practical requirement of UAV track-
ing. Subsequently, through the decontaminated upsampling
network, the high-resolution features can be obtained with
more scale information. Especially, the low-to-high (LTH)
encoder in the upsampling network is proposed to remove
the additional contamination information. In addition, the
pooling distance (PD) loss is designed to enhance the decon-
tamination capability of the decontaminated downsampling
network. The proposed FDNT has efficiently achieved robust
performance in three challenging aerial tracking benchmarks
[33], [34], and the average results are as shown in Fig. 1,
where FDNT has the most robust performance. The primary
contributions of this work are as follows:

• A decontaminated downsampling network is proposed
to decrease the polluted object features with the super-
vision of the carefully designed PD loss.

• A decontaminated upsampling network is presented to
strengthen the scale information of the tracked object,
with the LTH encoder for further decontamination.

• Exhaustive evaluations on three challenging aerial
benchmarks prove the promising tracking performance
of FDNT to SOTA trackers. Real-world experiments are
carried out on a common aerial robot, validating the
practicability of FDNT in real tracking applications.

II. RELATED WORKS

A. UAV Tracking with Correlation Filter

Due to the computational limitations of the UAVs, the
tracking algorithms must be lightweight in order to provide
real-time performance for the practical applications. With
the aerial perspectives, UAV tracking is more likely to face
challenges of difficult scenes, which makes robust tracking
difficult. Hence, it is necessary to realize a favorable trade-off
between speed and performance. Previously, the correlation
filter (CF)-based trackers [18], [19] have drawn considerable
interest due to their computational efficiency, making them
well-suited for the real-time UAV applications [20]. How-
ever, the cyclically shifted samples for training the CF-based
trackers are not real samples. Thus, the effects are not ideal
when object feature pollution is present.

B. UAV Tracking with Siamese Network

Siamese-based tracker is another well-known branch of
UAV tracking. Siamese networks [4]–[7], which solve the
tracking problem through template matching, have made
tremendous strides in recent years. As a pioneering study,
SiamFC [4] demonstrates the Siamese framework’s advan-
tages by defining tracking as the similarity matching process
between the template and the search patch. SiamRPN [7],
inspired by the region proposal network (RPN) [21], divides
tracking into two subtasks using classification and regression
branches. Siamese trackers [8]–[10], based on SiamRPN,
distinguish the tracked object characteristics in a variety
of UAV settings with a balance of efficiency and effect.
Although the existing UAV tracking approaches work well
in a range of tracking scenes, when extracting robust search
features is challenging owing to a lack of discriminative
object information, the matching process is typically inef-
fective. Especially, object feature pollution which is caused
by frequent problems in UAV tracking such as occlusion,
fast motion, and illumination variation, will have a signifi-
cant impact on the performance of trackers. To handle the
problem of feature pollution effectively and efficiently, this
work proposes a novel feature decontamination framework,
achieving robust UAV tracking performance.

C. Image Denoising & Deblurring

Downsampling has been increasingly common for image
denoising jobs in recent years. SDCNN [13] uses the BDCT-
based downsampling operation to effectively improve the
reconstruction quality by incorporating frequency informa-
tion with spatial context. Additionally, InvDN [14] applies
several DownScale Blocks to remove the noise from the
noisy image. This approach samples a fresh latent variable
from the previous distribution and combines it with the low-
resolution image to reconstruct the information lost due to
downsampling.

The technology of upsampling is frequently employed for
the image deblurring process. BMDSRNet [15] applies the
super-resolution technology to assist in the acquisition of
dynamic spatio-temporal information from a single static
motion-blurred image. SRDN [16] develops the space target
super-resolution network to effectively extract the global fea-
ture, further rebuilding the high-resolution and clean images.
However, the image downsampling and upsampling can just
handle image denoising and deblurring respectively, only part
of the contamination issues. They are unable to address the
object feature pollution issues in UAV tracking, easily caused
by the challenging scenarios, such as occlusion, fast motion,
and illumination variation.

III. METHODOLOGY

This section introduces the proposed FDNT in depth. As
depicted in Fig. 2, FDNT can be divided into four sub-
modules, Feature extraction network, Decontaminated down-
sampling network, Decontaminated upsampling network, and
Classification & regression network.
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Fig. 2. Overview of the proposed FDNT. The components from the left to right are Feature extraction network, Decontaminated downsampling
network, Decontaminated upsampling network, and Classification & regression network. Best viewed in color (the image frames from person16 in
UAV123@10fps [34]).

A. Feature Extraction Network

To meet the real-time applications onboard the embedded
platform, FDNT uses a lightweight backbone known as
AlexNet [11], which is used in both the template and search
branches to extract the features. The last layer output feature
maps of the search branch and template branch can be
utilized in the subsequent process.
Remark 1: Since the template and search region features
will pass the weight-sharing decontaminated downsampling
network with the same process, the input and output of the
network are uniformly represented by Fh ∈ RW×H×C and
Fl ∈ RW

2 ×H
2 ×C in the following introduction (C, W, H

represent the channel, width, and height of the feature maps
respectively).

B. Decontaminated Downsampling Network

The decontaminated downsampling network consists of
two asymmetric convolution branches. As shown in Fig. 3,
the first branch is to downsample the high-resolution features
Fh, and then enhance the features with several convolution
(Conv) layers. Thereby the preliminary low-resolution fea-
tures Fa

l ∈ RW
2 ×H

2 ×C is formed:

Fa
l = Conv(Downsample(Fh)) . (1)

To better enhance the useful information, the second
branch first applies some convolution layers to explore the
valid information in Fh, and then reduce the resolution
to the output features Fb

l ∈ RW
2 ×H

2 ×C . After the above
two branches, Fl ∈ RW

2 ×H
2 ×C can be obtained with the

concatenation (Cat) and Conv:

Fb
l = Downsample(Conv(Fh)) ,

Fl = Conv(Cat(Fa
l ,Fb

l )) .
(2)

Subsequently, the low-resolution features of the template
and search are cross-correlated to the low-resolution Ma

l ∈
R

W1
2 ×H1

2 ×C . To reserve more object information, the high-
resolution features of the template and search are cross-
correlated to the initial high-resolution M′

h ∈ RW2×H2×C .
After the downsampling with a convolution layer, M′

h is

converted to M′

l ∈ R
W1
2 ×H1

2 ×C . Thereby, Ma
l and M′

l are
combined to Mb

l ∈ R
W1
2 ×H1

2 ×C through Cat and Conv.
Remark 2: Ma

l strengthens the low-resolution features and
M′

l enhances the high-resolution features. Afterward, Ma
l

and M′

l are fused to obtain the robust low-resolution simi-
larity maps, precisely expressing the location of the object.

C. Pooling Distance Loss

To better train the decontaminated downsampling network,
this work proposes a novel PD loss to supervise the down-
sampling process. PD between the high-resolution features
H and the low-resolution features L is defined as follows:

Lpd =
γ

SH

SL∑
l=1

min
h∈SH

∥L(l)−H(h)∥22 , (3)

where γ, SL, SH , L(l), and H(h) represent the weight of
this loss function, the multiplication between the width and
height of L, the multiplication between the width and height
of H , the l position values of all channels in L, and the
h position values of all channels in H , respectively. By
optimizing PD loss, low-resolution features obtained can ef-
fectively place importance on the object position information.
Remark 3: By adjusting the weight value in the loss function,
the downsampling process can reach an ideal effect. In
particular, the loss can reduce the interference information
in the low-resolution features, hence improving the relevance
to the object.

D. Decontaminated Upsampling Network

The decontaminated upsampling network utilizes the
unpooling to obtain the high-resolution features Ma

h ∈
RW1×H1×C with more scale information, which has been
reduced in the low-resolution features Mb

l . Furthermore, the
LTH encoder exploits Mb

l to ensure that the information
recovered in the high-resolution features has no interference,
illustrated in Fig. 3. Subsequently, The LTH encoder is
introduced in detail.

Before encoding, the input high-resolution and low-
resolution feature maps are reshaped to Mb

h ∈ RW1H1×C

and Mc
l ∈ R

H1
2

W1
2 ×C . Subsequently, the input of the
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Fig. 3. Detailed workflow of the decontaminated downsampling network
and the LTH encoder. The left sub-window illustrates the composition of the
decontaminated downsampling network. The right one shows the structure
of the LTH encoder. Best viewed in color.

encoder Mh ∈ RW1H1×C and Ml ∈ R
H1
2

W1
2 ×C can be

acquired with the learnable positional encoding. The scaled
dot-product attention (Att) can typically be stated by:

mAtt(Q,K,V) = (Cat(a1, ...,aN ))WC ,

an = Att(QWn
1 ,KWn

2 ,VWn
3 ) ,

(4)

where WC ∈ RC×C , Wn
1 ,W

n
2 ,W

n
3 ∈ RC×Cd can be con-

sidered the fully connected layer operator and n ∈ 1, ..., N
(Cd = C/N , N represents the amount of attention heads in
parallel). Thereby, the result of the first multi-head attention
module Md

l ∈ R
H1
2

W1
2 ×Ccan be obtained by:

Md
l = mAtt(Ml,Mh,Mh) . (5)

After the normalization (Norm), Me
l ∈ R

H1
2

W1
2 ×C can be

formulated as:

Me
l = Norm(Ml +Md

l ) . (6)

To prevent fresh contamination, Me
l strengthens the valid

information of Mh ∈ RW1H1×C through the feed-forward
network (FFN) and the global average pooling (GAP).
Thereby Mf

h ∈ RW1H1×C is acquired by:

Mc
h = mAtt(Mh,Mh,Mh) ,

Md
h = Norm(Mh +Mc

h) ,

W = FFN(GAP(Me
l )) ,

Me
h = Md

h + γ1 ∗W ∗Md
h ,

Mf
h = Norm(FFN(Me

h) +Me
h) ,

(7)

where γ1 and ∗ represent a learning weight and the channel-
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Fig. 4. Visualization of the confidence maps of the baseline and the
proposed FDNT. In the original frames, red boxes are used to identify
the objects. FDNT obtains better attention on tracked objects for UAV
tracking (the image frames from person12 2, person17 1, and group2 3 in
UAV123@10fps [34]).

wise multiplication respectively. Owing to the LTH encoder,
the high-resolution features contain more scale information
of the object without adding new interference.
Remark 4: Through the downsampling and upsampling pro-
cess, the object location and scale can be precisely estimated
in the subsequent classification & regression network [10].
As shown in Fig. 4, the final confidence maps have been
significantly improved by FDNT, compared to the baseline
which is composed of the feature extraction network and the
classification & regression network.

IV. EXPERIMENTS

A. Implementation Details

FDNT was trained for 70 epochs totally, with the last two
layers of AlexNet being regulated in the final 60 epochs and
the first three layers being frozen. The learning rate is set
to 0.005 and steadily drops from 0.005 to 0.0005 in the log
space. Moreover, the sizes of the template and search are
set to 127×127 and 287×287, respectively. We trained the
proposed tracker with image pairs derived from COCO [22],
ImageNet VID [23], GOT-10K [24], and LaSOT [25]. In
addition, FDNT was trained on a PC equipped with an Intel
i9-9920X CPU, 32GB of RAM, and two NVIDIA TITAN
RTX GPUs.

B. Evaluation Metrics

The main metrics in the one-pass evaluation (OPE) metrics
are precision, normalized precision, and success rate [26].
These three indicators can be used to assess tracker per-
formance. The success rate is computed by the intersection
over union (IoU) of the ground truth and estimated bounding
boxes. The success plot (SP) indicates the percentage of
frames that have an IoU greater than a predefined thresh-
old. Additionally, the precision is determined by computing
the center location error (CLE) between the estimated and
ground truth locations. The precision plot (PP) illustrates the
proportion of frames with CLEs falling inside a certain range.
Besides, the normalized precision is derived by normalizing
the precision across the size of the ground truth bounding
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Fig. 5. Overall performance of FDNT and SOTA trackers on UAV123 [34] (the first row), UAV123@10fps [34] (the second row), and UAVTrack112 L [33]
(the third row) benchmarks. The evaluation results indicate that the proposed approach, i.e., FDNT, achieves superior performance on all benchmarks.

box, which is used to remove the effect of different object
sizes on the precision. The normalized precision plot (NPP)
is evaluated by the area under the curve (AUC). Meanwhile,
the tracking methods are evaluated based on the SP’s AUC,
the NPP’s AUC, and the PP at a 20-pixel threshold.

C. Evaluation on Aerial Benchmarks
1) Overall performance: FDNT is compared to other

13 SOTA trackers, including HiFT [10], SiamAPN++ [8],
SiamRPN++ [12], SiamFC [4], DaSiamRPN [27], DSiam
[28], AutoTrack [18], TADT [29], ARCF [19], UDT+ [30],
UDT [30], CF2 [31], and DeepSTRCF [32], using three
challenging and authoritative aerial tracking benchmarks.
Remark 5: For the justice, every Siamese-based tracker
adopts the same lightweight backbone network AlexNet [11],
pre-trained on ImageNet [23].

UAVTrack112 L [33]: To show the proposed framework’s
efficacy in lengthy tracking situations, we undertake assess-
ments on UAVTrack112 L, a demanding long-term aerial
tracking benchmark with more than 60k frames. As seen in
Fig. 5, FDNT has progressed to the highest level. FDNT
ranks the first place in all precision (0.784), normalized
precision (0.651), and success rate (0.589), followed by
SiamRPN++ with a precision of 0.769, a normalized pre-
cision of 0.636 and a success rate of 0.557. The proposed
feature decontaminated network is responsible for the effec-
tive performance of FDNT to handle feature pollution.

UAV123 [34]: UAV123 is a huge UAV benchmark con-
sisting of 123 high-quality sequences totaling over 112K
frames that cover a number of difficult aerial scenarios such
as object occlusion, illumination variation, and out-of-view.
Consequently, UAV123 is able to assist in conducting a
thorough assessment. FDNT performs better than competing

SOTA trackers in a variety of aerial tracking circumstances,
indicating its higher robustness. Specifically, FDNT yields
the best success score (0.606), surpassing the second-best
HiFT (0.589) and the third-best SiamAPN++ (0.582) by
2.9% and 4.1%, respectively. Similarly, in precision rate,
FDNT achieves the best score (0.791), followed by HiFT
(0.787) and SiamRPN++ (0.769). Besides, the normalized
precision (0.685) of FDNT shows that our tracker has
a robust overall performance. The promising performance
demonstrates that FDNT is a satisfying decision in difficult
aerial tracking scenes.

UAV123@10fps [34]: UAV123@10fps is a downsampled
version of the original version. Therefore, the issue of
forceful motion is exacerbated in UAV123@10fps compared
to UAV123. As depicted in the second row of Fig. 5, FDNT
can consistently achieve satisfactory results, attaining the
highest success rate, precision, and normalized precision.
In terms of success, FDNT ranks first with a success score
of 0.593, exceeding the second- and third-best SiamAPN++
(0.580) and HiFT (0.569) by 2.2% and 4.2% respectively. As
for the precision, FDNT (0.773) also maintains a favorable
performance at the best rate. While in terms of normalized
precision, FDNT (0.672) also reaches the first place. To
summarize, FDNT has a more preferable performance than
other SOTA trackers, demonstrating the superior robustness
in a variety of aerial tracking conditions.

2) Attribute-based comparison: Abundant object feature
pollution in aerial tracking scenarios makes tracking more
challenging. We assess the tracker performance on aerial-
specific attributes to comprehensively study the robustness
of FDNT, including partial occlusion, full occlusion, illu-
mination variation, and fast motion as illustrated in Fig. 6.
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Fig. 6. Attribute-based evaluation decontamination performance of FDNT and other SOTA trackers on UAVTrack112 L [33], UAV123 [34], and
UAV123@10fps [34] benchmarks. It shows that FDNT has the best performance in difficult situations where the object features are contaminated.

Compared with other trackers, FDNT outperforms the best
performance in the above challenging tracking scenes, rank-
ing first in terms of evaluation metrics. Especially, FDNT
improves the second-best performance in fast motion and full
occlusion by approximately 2% and 4% in UAVTrack112 L
respectively, which is shown in Fig. 6.
Remark 6: The promising results demonstrate that FDNT
can reduce the contaminated object features to overcome
feature pollution issues. Particularly, when the object in
UAV tracking is seriously occluded, FDNT can learn robust
features to effectively estimate the location and scale of
the object. Specifically, FDNT improves the performance
significantly in occlusion scenarios.

3) Ablation study: On UAV123, in-depth investigations
are conducted among FDNT having various modules enabled
to confirm the efficacy of each module of the proposed
method. For clarity, we first introduce the meaning of sym-
bols used in TABLE I. This work considers Baseline as the
model with only feature extraction network and classification
& regression network. DD represents the decontamination
downsampling network and NP represents the non-learnable
pooling operation. DU indicates the decontamination upsam-
pling network and NI symbolizes the non-learnable interpo-
lation. Except for the examined module, each version of the
tracker employs the same training strategy for the sake of
equality. As shown in TABLE I, if the features are downsam-
pled by the non-learnable pooling without reducing the in-
terference of the feature pollution, it will cause performance

TABLE I
ABLATION STUDY OF VARIOUS PARTS OF THE PROPOSED FDNT ON

UAV123 [34]. ∆ SYMBOLIZES THE IMPROVEMENT OVER THE

BASELINE TRACKER. PRE REPRESENTS THE PRECISION AND SUC

REPRESENTS THE SUCCESS

Trackers Pre ∆pre(%) Suc ∆suc(%)
Baseline 0.709 - 0.495 -
Baseline+NP+DU 0.707 -0.3 0.467 -6.0
Baseline+DD+NI 0.740 +4.4 0.498 +0.6
Baseline+DD+DU (FDNT) 0.791 +11.6 0.606 +22.4

degradation. This is due to the fact that the non-learnable
pooling cannot enhance the location information of the
object. While if the low-resolution features downsampled are
not upsampled by the decontaminated upsampling network,
but are directly input into the non-learnable interpolation, the
effect will also be reduced. The key reason is that the non-
learnable interpolation is unable to restore the object’s scale
information contrapuntally.

4) Key parameter analysis: Due to the fact that the weight
of the first classification branch w directly affects the object
location prediction in the test, it has an important influence
on tracking performance. In order to assess the impact of
w, w is set to various values for further investigation. It is
set from 0.95 to 1.05. As presented in Fig. 7, excessively
diminutive w makes the first classification branch ineffective.
While excessively large w will enlarge the error of the
first classification branch, impacting the determination of the
object location. The AUC and precision of FDNT acquire the
best results while w = 1.02. Therefore, we set w to 1.02 in
all evaluations.

D. Comparison to Trackers with Deeper Backbone

FDNT exploits the feature decontaminated network to
precisely predict the position and size of the object by
reducing the contaminated features. Consequently, without
introducing a large computational burden, FDNT achieves
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Fig. 7. Key parameter analysis of the first classification weight on
UAV123@10fps [34]. While w = 1.02, FDNT obtains the optimal results.
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Fig. 8. Precision-speed research by quantitatively comparing FDNT and
trackers with a deeper backbone on UAV123@10fps [34]. The proposed
tracker achieves a superior trade-off on the benchmark.

SOTA performance. In order to further evaluate how effective
it is, we compare FDNT with top-ranked trackers adopting
deeper backbones. Trackers, including SiamRPN++ (ResNet-
50) [12], SiamRPN++ (MobileNet) [12], Ocean (ResNet-50)
[35], SiamCAR (ResNet-50) [36], SiamGAT (GoogleNet)
[37], SiamBAN (ResNet-50) [38], SiamFC+ (ResNet22)
[39], and SiamRPN+ (ResNet22) [39], are among the most
advanced trackers. As shown in Fig. 8, despite utilizing
the lightweight network AlexNet [11] as the backbone,
FDNT has a desirable balance between tracking robustness
and speed. Attributing to the decontaminated downsampling
network and decontaminated upsampling network, FDNT is
competent for effective and efficient object tracking in aerial
tracking conditions.
Remark 7: For fairness, the speed of all compared trackers is
measured on the PC equipped with an Intel i9-9920X CPU,
32GB of RAM, and two NVIDIA TITAN RTX GPUs.

E. Failure Cases

A few failure instances of the proposed approach are
shown in Fig. 9. In these sequences, when the object dis-
appears from view or the angle of view changes greatly, the
continuous frame information needed by the trackers will
provide the incorrect object appearance information. Thus,
the process of feature downsampling and upsampling will be
misled by the chaotic object information. Finally, the trackers
are easy to lose the tracked object due to the influence of
these tracking situations.

FDNT Ground truth

# 000508 # 000816# 000001

# 001151

# 000001 # 000240 # 000392

# 000001 # 001103

Fig. 9. Failure tracking scenarios of FDNT. The first, second, and
third rows specifically display the tracking results on person7 1 from
UAV123@10fps [34], wakeboard6 from UAV123 [34], and electric box
from UAVTrack112 L [33], respectively.

# 000001 # 001116# 000457

# 000402# 000001 # 000153 # 000402

# 000001 # 000626# 000061

Fig. 10. Onboard tests of tracking in various UAV settings. With 31.4
frames per second, FDNT provides the robust performance. The red boxes
represent the tracking result, whereas the green boxes represent the ground
truth. In addition, the CLE score below the green dashed line is regarded
as the success tracking outcome for the real-world tests. The experimental
results verify FDNT’s satisfactory tracking performance.

V. REAL-WORLD TESTS

In order to prove the practicability in real-world appli-
cations, FDNT is further demonstrated in this section on a
typical UAV robot equipped with an embedded onboard pro-
cessor, namely the NVIDIA Jetson AGX Xavier. As shown
in Fig. 10, three field tests are depicted, including different
challenging scenes. The primary difficulties encountered in
the tests are occlusion (the first row, the second row, and
the third row), fast camera motion (the first row and the
third row), and small object (the second row and the third
row). FDNT maintains satisfying tracking robustness in a
variety of challenging scenarios with an average speed of
31.4 frames per second during the tests. Hence, the real-
world tests conducted onboard have effectively validated
FDNT’s superior performance and efficiency in a variety of
UAV-specific scenarios.

VI. CONCLUSION

This work proposes a novel end-to-end feature decontam-
inated network for UAV tracking. The objective is to cope
with the feature pollution issues, thereby obtaining robust
object features while maintaining high effectiveness in chal-
lenging UAV tracking scenes. To enhance the location and
scale information of the object, the decontaminated down-
sampling network supervised by PD loss and the decontam-
inated upsampling network are presented. Extensive exper-



iments have established that FDNT is capable of achieving
a superior performance-efficiency trade-off. In conclusion,
we believe that FDNT will aid in the advancement of UAV
tracking and anti-pollution visual object tracking.
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